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Abstract

The erosion of the safe basins of a quadratic nonlinearity oscillator under harmonic or bounded random noise

excitations is studied in detail by the Monte-Carlo method. It is found that a small random disturbance may destroy the

integrity of the safe basins, thus making the system less safe. However, numerical results show that increasing the system’s

damping and decreasing the system’s nonlinearity may enlarge the original integral safe basins. As an alternative definition,

stochastic bifurcation may be defined as a sudden change in the character of stochastic safe basins when the bifurcation

parameter of the system passes through a critical value, which is different from the previous ones by the authors, where

stochastic bifurcation may be defined as a sudden change in the character of a stochastic attractor when the bifurcation

parameter of the system passes through a critical value.

r 2007 Published by Elsevier Ltd.
1. Introduction

Engineering structures are often subjected to time-dependent loadings of both deterministic and stochastic
nature, such as the natural phenomena due to wind gusts, earthquakes, ocean waves, and random disturbance
or noise, which always exists in a physical system. The influence of random disturbance on the dynamical
behavior, especially bifurcation phenomena, of a nonlinear dynamical system has caught the attention of
many researchers. At present, there are mainly two kinds of definitions for stochastic bifurcation available.
One is based on the sudden change of the stationary probability density function—the so-called P-bifurcation
[1]—and the other one is based on the sudden change of sign of the largest Lyapunov exponent—the so-called
D-bifurcation [1]. The lack of a certain relationship between the shape variation of the stationary probability
density function of the random response and the quantitative variation of the random excitation is the
difficulty encountered by P-bifurcation. On the other hand, the lack of an efficient and accurate algorithm for
calculating the Lyapunov exponent is the difficulty encountered by D-bifurcation. Besides, several studies
show that these two kinds of definitions may lead to different results [2,3]. For instance, Baxendale [2] provides
an example in which the shape of the stationary probability density does not depend on the bifurcation
ee front matter r 2007 Published by Elsevier Ltd.
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parameter, while the largest Lyapunov exponent changes its sign. On the contrary, Crauel and Flandoli [3]
presented an example in which the stationary probability density function does change its shape from a mono
peak into a double peak at a critical parameter value, while the largest Lyapunov exponent does not change its
sign. Thus, one cannot help thinking about what really occurs in stochastic bifurcation, what is the topological
property of a stochastic system, what kind of invariance is suitable for predicting stochastic bifurcation, and
so on. In the recent researches [4–7], the authors of this study provide an alternative topological definition, in
which stochastic bifurcation may be defined as a sudden change in the character of a stochastic attractor when
the bifurcation parameter of the system passes through a critical value.

Alternative to the stationary probability density function, the largest Lyapunov exponent, and the
stochastic attractor, there is another quantitative method to identify the increase of bifurcation and chaos. We
know that one of the goals of studying dynamical systems is to determine their global structures, and one of
these global structures is the boundary of a basin. For some time, the limitation of the vibration amplitude
may be more important, since the structure of the system will be destroyed when the amplitude of the
vibration passes through a critical value. Studies on safe basins in deterministic oscillators can be found in
Refs. [8–12]. It is well known that the coexistence of periodic and chaotic attractors often leads to fractal basin
boundaries. On the contrary, a smooth basin boundary being eroded into a fractal one may imply the
generation of chaos in the system. Up to now, few studies [13] have focused on the influences of random
disturbance on the safe basins. In this paper, the erosion of the safe basins of a quadratic nonlinearity
oscillator under harmonic or bounded random noise is studied in detail by the Monte-Carlo method. It is
found that a small bounded random noise may destroy the integrity of the safe basins and make the system
less safe.

2. Erosion of safe basins in a deterministic system

Consider a quadratic nonlinearity oscillator under deterministic harmonic excitations governed by the
following equation:

€xþ m _xþ x� ax2 ¼ f cos Ot, (1)

where overhead dots indicate differentiation with respect to time t, m is the damping ratio of the oscillator, a is
a positive constant which denotes the density of the nonlinearity of the oscillator, and f and O40 are the
amplitude and frequency of the deterministic excitation, respectively.

System (1) is a typical nonlinear dynamical system. While dealing with vibration problems of shipping and
circumgyrating axial, the coupling of the lengthwise and transverse vibrations in a pillar may be modeled as a
free vibration problem with quadratic nonlinearity as shown in system (1). According to Refs. [8,9], the safe
basins of the system may be defined using a bounded area D in the space of phase trajectories. The trajectory
start from the safe basins will remain in the area D when the time t tends to infinity. Otherwise, the trajectory
start beyond the safe basins will escape the area D; such a trajectory is unstable and may destroy or collapse
the system. The structure of the safe basins is similar to some attractor basins [10]. The acreage and shape of
the safe basins will change when the parameter of the system changes.

In this paper, the evolution of the safe basins of system (1) is studied numerically when the parameter f

changes its value, firstly. In the numerical simulation, the parameters in system (1) are chosen as m ¼ 0.5,
a ¼ 1.0, and O ¼ 1.0. The bounded area D is defined as follows:

D ¼ fðx; yÞ : �4pxp4; �4pyp4; y ¼ _xg,

then D is divided into 200� 200 lattices, and the lattice points are taken as the initial values for the solutions of
system (1). If the solution of system (1) remains in the area D for a sufficiently long time up to t ¼ 2000, such a
solution can be approximately taken as a safe solution, and the corresponding lattice may be taken as part of
the safe basins; if the solution of system (1) escapes the area D, such a solution is taken to be an unsafe
solution, and the corresponding lattice is beyond the safe basins. The governing equation (1) is numerically
integrated by the fourth-order Runge–Kutta algorithm, and the numerical results are shown in Fig. 1(a)–(j).
The black region denotes the safe basins while the blank region represents the unsafe area in Figs. 1, 3, 7,
and 8.
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Fig. 1. Erosion of safe basins in system (1): m ¼ 0.5, a ¼ 1.0, O ¼ 1.0. (a) f ¼ 0.300, (b) f ¼ 0.350, (c) f ¼ 0.360, (d) f ¼ 0.380, (e) f ¼ 0.390,

(f) f ¼ 0.395, (g) f ¼ 0.397, (h) f ¼ 0.400, (i) f ¼ 0.410 and (j) f ¼ 0.420.
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Fig. 1. (Continued)
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The safe basins shown in Fig. 1(a) are a densely packed, integral ones, while the safe basins shown in
Fig. 1(b)–(j) are eroded ones. Calculation results show that in the case when fpf1 ¼ 0.321, the boundaries of
the safe basins of system (1) are smooth without any erosion as shown in Fig. 1(a); in the case when f4f1, the
boundaries of the safe basins are eroded more and more with an increase of f as shown in Fig. 1(b)–(j); and in
the case when f4f1 ¼ 0.443, the safe basins disappear completely. Hence, f1 and f2 are two significant critical
points for the evolution of erosion.

To quantify the erosion process more clearly, we introduce the measure Gm to assess the engineering
integrity of the safe basins following the methodology established by Soliman and Thompson [9]. Using a grid
of N starts, we write the proportions that fall within D in m forcing cycles number as Gm. The numerical results
are shown in Fig. 2.

3. Erosion of safe basins in a stochastic system

Next, we consider the effect of the random noise on the safe basins. System (1) is rewritten as follows:

€xþ m _xþ x� ax2 ¼ xðtÞ, (2)
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Fig. 2. Integrity measure curves of system (1): J: G1, *: G2, � : G3, &: G4, n: G5.
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where x(t) is a bounded random process which is governed by the following equations:

xðtÞ ¼ f cos jðtÞ; _j ¼ Oþ g _W ðtÞ, (3)

where f40 is the amplitude of the random excitation, O the center frequency, W(t) the standard
Wiener process, and gX0 the noise intensity. Herein, the external dynamic force x(t) is modeled by a cosine
function with deterministic amplitude f, and an angle f(t) ¼ Ot+gW(t) whose rotating speed is a constant O
which is superimposed by white noise _W ðtÞ of intensity g. According to Wedig [14], the power spectrum SxðoÞ
of x(t) is

SxðoÞ ¼
1

2

f 2g2ðO2 þ o2 þ ðg4=4ÞÞ

ðO2 � o2 þ ðg4=4ÞÞ2 þ o2g4
. (4)

The generalized fluctuation model (3) covers both opposite limit cases from Eq. (4). Obviously, the limit
procedure f ¼ ðg=

ffiffiffi
2
p
Þ ! 1 leads to the uniformly distributed power spectrum of white noise. However, if

g-0, the fluctuation spectrum Sx(o) is disappearing over the entire frequency range except at two discrete
frequencies o ¼7O where Sx(7O) goes to infinity, implying a harmonic excitation. Obviously |x(t)|pf, and
hence x(t) is a bounded random process. When g ¼ 0, we have x(t) ¼ f cosOt, which is exactly the harmonic
excitation we considered in Eq. (1). In this paper, only the case when g is small, say go0.1, is discussed. In
order to compare the results with those of the deterministic system (1), the parameters in system (2) are chosen
as follows:

m ¼ 0:5; a ¼ 1:0; O ¼ 1:0; g ¼ 0:03.

For the method of numerical simulation, the reader is referred to Shinozuka [15], and the Monte-Carlo
method is used to generate random samples. Eq. (3) can be written as follows:

xðtÞ ¼ f cosðfðtÞÞ;
_fðtÞ ¼ Oþ gzðtÞ; zðtÞ ¼ _W ðtÞ:

(
(5)

The formal derivative z(t) of the unit Wiener process is Gaussian white noise, which has a uniform power
spectrum and is physically unrealized. However, for the numerical simulation in this paper, the power
spectrum of z(t) is taken as

SzðoÞ ¼
1; 0oop2O;

0; o42O:

(
(6)
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For numerical simulation, it is more convenient to use the pseudorandom signal given by [15]

zðtÞ ¼

ffiffiffiffiffiffi
4O
N

r XN

k¼1

cos
O
N
ð2k � 1Þtþ jk

� �
; (7)

where jk’s are mutually independent and uniformly distributed in (0, 2p], and N is a large integer number. By
the center limit theorem, it can be proved [15] that when N-N, the random process x(t) given by Eq. (7) will
converge to an ergodic Gaussian stationary process with the same correlation function and spectrum density
given by Eq. (6) as that of the expected process.

Here, only 500 random samples are used in this paper due to the limitation of calculation capacity. If the
solution of system (2) remains in the area D for a sufficiently long time t not less than 2000 in all the 500
random samples, which can be approximately taken as a safe solution, then the corresponding lattice may be
considered to be a part of the safe basins, which is defined in a similar way as for the deterministic one; if the
solution of system (1) escapes from the area D, such a solution is considered to be an unsafe solution, and the
corresponding lattice is not belonging to the safe basins. One may call such safe basins as stochastic safe
basins. The governing equation (2) is numerically integrated by the fourth-order Runge–Kutta algorithm, and
the numerical results are shown in Fig. 3(a)–(h).

Fig. 3(a)–(h) shows that the stochastic safe basins are eroded more and more with an increase of f, which is
similar to the deterministic case as shown in Fig. 1(a)–(j), and yet with significant differences in f1 and f2.
Calculation results show that in the case when fpf1 ¼ 0.313, the boundaries of the stochastic safe basins of
system (2) are smooth without any erosion as shown in Fig. 1(a); in the case when f4f1, the boundary of the
stochastic safe basins begins to be eroded more and more with an increase of f as shown in Fig. 3(b)–(h); and
in the case when f4f2 ¼ 0.391, the stochastic safe basins disappear completely. The random disturbance gW(t)
causes f1 and f2 to decrease from f1 ¼ 0.321, f2 ¼ 0.443 to f1 ¼ 0.313, f2 ¼ 0.391 and makes the system more
unsafe in comparison with the deterministic case.

The integrity measure curves of system (2) are shown in Fig. 4. For different g, the pictures of f1 and f2 as
functions of g are drawn in Figs. 5 and 6. Figs. 5 and 6 show that both f1 and f2 are decreasing functions of g,
which means random disturbance may destroy the integrity of the safe basins, thus making the system less
safe. Here, the ratio of the safe basins acreage and the acreage of area D is used to calculate the two critical
points f1 and f2. The ratio will be a constant, hence fof1 when f is small; the ratio will become small when
the boundary of the stochastic safe basins begins to be eroded hence f ¼ f1; however the ratio will be zero
when f ¼ f2.

4. Effect of other parameters on safe basins

Herein, the effect of the other parameters such as m and a on the safe basins is discussed. The effect of
the parameter m on the deterministic safe basins is discussed firstly. The safe basins of system (1) are shown in
Fig. 7, when the parameters of system (1) are chosen as follows:

f ¼ 0:395; a ¼ 1:0; m ¼ 1:0; g ¼ 0:0,

which are the same as in Fig. 1(f), except m increases from 0.5 to 1.0 for comparison. Clearly, the safe basins
shown in Fig. 7 are larger than that in Fig. 1. The two critical values of the deterministic safe basins of system
(1) are f1 ¼ 0.747 and f2 ¼ 1.099 in the case when a ¼ 1.0, m ¼ 1.0, g ¼ 0.0, while the two critical values in
system (2) are f1 ¼ 0.525, f2 ¼ 0.685 in the case when a ¼ 1.0, m ¼ 1.0, g ¼ 0.03. The area of the safe basins
in Fig. 7 is larger than the area of the safe basins in Fig. 3. Obviously, the random noise gW(t) makes the
system less safe, but this can be improved by increasing the system’s damping.

Then the effect of a on the deterministic safe basins is discussed secondly. The safe basins of system (1) are
shown in Fig. 8, when the parameters of system (1) are chosen as follows:

f ¼ 0:395; a ¼ 0:5; m ¼ 0:5; g ¼ 0:0,

which are the same as in Fig. 1(f), except a decreases from 1.0 to 0.5 for comparison. Clearly, the safe basins
shown in Fig. 8 are larger than that in Fig. 1. The two critical values of the deterministic safe basins of system
(1) are f1 ¼ 0.681 and f2 ¼ 0.881 in the case when a ¼ 0.5, m ¼ 0.5, g ¼ 0.0, while the two critical values in
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Fig. 3. Erosion of safe basins in system (2): m ¼ 0.5, a ¼ 1.0, O ¼ 1.0, g ¼ 0.03. (a) f ¼ 0.300, (c) f ¼ 0.370, (d) f ¼ 0.372, (e) f ¼ 0.377,

(f) f ¼ 0.380, (g) f ¼ 0.385 and (h) f ¼ 0.389.

H. Rong et al. / Journal of Sound and Vibration 313 (2008) 46–5652
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Fig. 3. (Continued)

Fig. 4. Integrity measure curves of system (2): J: G1, *: G2, � : G3, &: G4, n: G5.
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system (2) are f1 ¼ 0.597, f2 ¼ 0.692 in the case when a ¼ 0.5, m ¼ 0.5, g ¼ 0.03. Obviously, the random noise
gW(t) makes the system less safe, but this can be improved by decreasing the system’s nonlinearity.
5. Conclusion and discussion

The analysis shows that random disturbances lead to a decrease of two critical values f1 and f2, and make
the system less safe; however, this can be improved by increasing the system’s damping and decreasing the
system’s nonlinearity. The stochastic safe basins discussed here should be attached to some probability
measure, since the random samples 500 are limited due to the limitation of calculation capacity. More random
samples should be taken if one wants to have a more reliable probabilistic analysis.
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Fig. 5. f1 as a function of g in system (2): m ¼ 0.5, a ¼ 1.0, O ¼ 1.0.

Fig. 6. f2 as a function of g in system (2): m ¼ 0.5, a ¼ 1.0, O ¼ 1.0.
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It is likely that a small value of damping m can be more realistic and will provide more compact safe basins,
but the large values of the damping m ¼ 0.5, 1.0 taken here may reduce the CPU time since the solution needs a
shorter time to escape from the potential well. It is known that the solution needs a short time to escape from
the potential well, when it does not correspond to a safe initial condition; hence, T ¼ 2000 is a sufficiently long
time for the transient time.

One may take the parameters m, a, f, and g as adjustable parameters to study the evolution of erosion of the
safe basins in the further research.



ARTICLE IN PRESS

Fig. 7. Safe basins in system (1) f ¼ 0.395, a ¼ 1.0, m ¼ 1.0, g ¼ 0.0.

Fig. 8. Safe basins in system (1) f ¼ 0.395, a ¼ 0.5, m ¼ 0.5, g ¼ 0.0.
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As an alternative definition, stochastic bifurcation may be defined as a sudden change in the character of
stochastic safe basins when the bifurcation parameter of the system passes through a critical value, which is
different from the previous ones by the authors, where stochastic bifurcation may be defined as a sudden
change in the character of a stochastic attractor when the bifurcation parameter of the system passes through a
critical value. One may call such phenomena that occur in the sudden change of the safe basins, which
transform from an integrated one to an eroded one or from an eroded one to nothingness when f passes
through the critical values f1 and f2, as safe basin bifurcation; then the two critical values f1 and f2 may be take
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as stochastic bifurcation points. This definition applies equally well either to randomly perturbed motions or
to purely deterministic motions.
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